
From Algorithms
to Architecture

...a lightning introduction to computer architecture

Implementing Algorithms

•Now have a methodology for
going from problem to program

•Next develop a mental model of a device that might
actually execute our algorithm, i.e. a computer!

Computer Programs

• Computers are programmed to perform many different
tasks.

• Computers execute very basic instructions in rapid
succession.

• A computer program is a sequence of instructions and
decisions.

• Programming is the act of designing and implementing
computer programs.

• The physical computer and peripheral devices are
collectively called the hardware.

• The programs the computer executes are called the
software.

The Anatomy of a Computer

•Central processing unit (CPU) performs
• Program control
• Data processing

•Storage
• Memory (Primary storage)
• Secondary storage

•Peripherals
• To interact with human users

•Networks

Schematic Diagram of a Computer

Computer Memory

•Set of memory locations
• To identify easily, number or name them
• To minimise bugs, restrict type of content

radius
(positive
integer)

salary
(positive

real)

username
(string)

address
(string)

holidaypic
(image)

age
(integer 0-150)

Might also specify whether
information can be changed or not

i.e. is constant/variable

speedOfLight
(integer = 300)

taxRate
(real 0-27.5)

Area-Circumference Problem

To find area & circumference of circle…
1. Print welcome message
2. Ask for & get radius from user
3. Compute area as pi.radius.radius
4. Compute circumference as 2.pi.radius
5. Report area, circumference & radius

Information flowing from one step
to another must be stored & so

needs a place in memory

Algorithm

•Envisage area/circumference algorithm
in terms of computer memory model

radius
(positive
integer)

area
(positive

real)

circumference
(positive

real)

pi
(constant
3.142)

2
(constant

2.0)

Data flow

• Only three sorts of instructions
• input - from external world to memory

• output - from memory to world

• assignment - from memory to memory

memory

outputinput

ALU

Arithmetic & Logic Unit

Control flow (1)

• Control mechanism implements algorithm
• sets up the data paths in appropriate sequence

memory

outputinput

ALU

Control
First computing devices had
control mechanisms that
were hardwired (fixed) or at
best “pluggable” e.g ENIAC

Changing the function of the
machine required literally

changing its wiring!

How it works…

• Switches control data flow
into and out of memory.

• Sequence of switch
settings determines
function

memory

input output

ALU 13

7

12

6

8

5

4

3

2

10 11

1

9

0 0 0 0 0 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0 1 0 1 0 1

Control flow (2)

• Recognising
• only three forms of control sequence required

(sequence, decision & repetition)
• & instructions can be encoded in memory like data

• allows general control mechanism to be implemented

Control

memory

outputinput

ALU

Instructions & hence the
machine’s function can be
changed quickly & easily.

Limitation: may be out of
program memory, yet

have free data memory or
vice versa!

Program
memory

Control flow (3)

• Finally
• realise that program & data can share same memory

Instructions stored in
sequentially numbered
locations in memory.

Current position in
program held in program
counter.

Control fetches current
instruction, decodes &
executes it (by setting
data paths), increments
PC, then fetches next
instruction, and so on.

Memory now holds
both program & data

Control

memory

outputinput

ALU

PC

Fetch
Execute

cycle

Spaghetti Code?

• “go to” programming…

1. Read first number
2. If first number > 10 then go to 4
3. go to 1
4. Read second number
5. If second number <= first number goto 8
6. Print “Well done”
7. go to 10
8. Print “sorry, no good!”
9. go to 4
10. Print “finished.”

Default is next
instruction

Von Neumann Architecture

• Stored-program computer architecture

• Credited to John von Neumann, circa 1946

Today
99.99999%

of all computers
still work like this!

Control

memory

outputinput

ALU

PC

CPU – Central Processing
Unit (note: ALU may be

considered part of it too.)

Practical Considerations

•Memory crucial to system speed!

•Memory technology

Non-volatile, cheap, so
plentiful, but slow!

Optical & Magnetic
Disks, tapes & CDROMs

High-speed, volatile,
expensive, so limited.

Semiconductor
RAM, ROM

Speed
differential
>10,000x

Memory Hierarchy
• Result of today’s

technological

• Long-term data &
programs stored in
secondary storage

• Moved into primary
memory (RAM) when
needed.

• When machine
switched on, no
program in memory

• Boot ROM load a
program (usually the
OS) into RAM and start
it running.

Control

Primary memory

outputinput

ALU

PC

Secondary
memory
(disks)

Boot ROM

Primary memory also
called RAM – Random

Access Memory

From problem to execution

•From requirements to algorithm

•From algorithm to program
(something “understandable” to machine)

•Ultimately need machine code
(1’s & 0’s representing switch patterns)

but how do we get it…?
• Directly write machine code

• Write assembly & translate

• Write high-level & translate

Translation is
a symbol

manipulation
task!

Language Hierarchy (1)

•Machine code
• Patterns of 1’s & 0’s ~ machine instruction
• Usually restricted, e.g. no real numbers
• Difficult & error-prone writing by hand!

Note: machine dependent, same operation may
require different pattern of 1’s & 0’s on different

machines. Computer designer/manufacturer
defines machine code.

10011000
11000011
01000000
01000110
11111000
10000110
00000011
11111100

:

Language Hierarchy (2)

•Assembly language
• Each machine instruction has mnemonic
• Easier to remember & understand

so slightly less error-prone,
but still difficult to do even simple things!

• One-to-one mapping
so translation to machine code is trivial

• Use program to do translation (assembler)

Like machine code, assembly
language is machine dependent

and low-level

MOV #5, R1
ADD R1, R2
STR @R0

:

Language Hierarchy (3)

•High-level language
• Much more “natural”, e.g. has real numbers!
• Much easier to understand & write
• Language standards, so machine independent
• Translation to machine code is complex

use program to do translation!

This program must
itself be able to be
executed on the
machine being

used!

input A
Z = A * 3 + 1;
print(“Z=“ . Z);

: Two approaches
 Interpret

 Compile

Interpreters

• Translate & immediately execute
each instruction in turn

Source code
(stored in file)

10 rem Sum two numbers
20 input “enter first number”, $a
30 input “enter second number”, $b

50 output “sum is “ . $s

interpreter

11100101001000100…

machine code
(generated
& executed,

never stored)

40 $s = $a + $b

Compilers

• Translate all instructions to machine code,
save & execute as needed

Source code
(stored in file)

10 rem Sum two numbers
20 input “enter first number”, $a
30 input “enter second number”, $b
40 $s = $a + $b
50 output “sum is “ . $s

compiler

machine code
(generated once
& stored in file)

0011000101010000100
11100101001000100…

Stored machine
code executed by
OS as many times

as required!

Java – compile & interpret

• Compile & save to bytecode (machine independent)

• Execute by interpreting bytecode

// Program MyProg

// David, Oct 2002

import java.io.*;

Import cs1.JRobo;

public class MyProg {

public static void mai

System.out.println(

JRobo robby = new J

robby.f(100);

robby.rect(150, 50);

}

}

Source code
(stored in file)

1100011100

0100010000

0111100111

0001010101

0001…

Java
compiler
(javac)

bytecode
(stored in file)

Java
interpreter

(java)

11100101001000100…

machine code
(generated
& executed,

never stored)

Also known as
the Java Virtual
Machine (JVM)

MyProg.class

MyProg.java

Java language levels…

Programs across Internet

• Java Applets – run anywhere safely!

// Program MyApplet

// David, Oct 2002

import java.io.*;

Import cs1.JRobo;

public class MyApplet

extends Applet {

public void paint(

JRobo robby = new J

robby.f(100);

robby.rect(150, 50)

}

}

Source code
(stored in file)

1100011100

0100010000

0111100111

0001010101

0001…

Java
compiler
(javac)

bytecode
(stored in file)

JVM in
webbrowser

creates machine
code for client

MyApplet.class

MyApplet.java

<html>
<body>
<applet class=“MyApplet.class”>
</applet>
</body>

html webpage
containing applet

(stored in file)

My WebPage

Look at this applet…

WebBrowser – Netscape
http://somewhere.com/mypage.html

Welcome to
MyApplet

Java
interpreter

(java)

11100101001000100…

IN
T
E
R
N

E
T

Mypage.html

The Java Programming Language

•Safe

•Portable

•Platform-independent
•Distributed as instructions for a virtual machine

•Vast set of library packages

•Designed for the Internet

HelloPrinter.java

1 public class HelloPrinter

2 {

3 public static void main(String[] args)

4 {

5 // Display a greeting in the console window

6

7 System.out.println("Hello, World!");

8 }

9 }

code/section_4/HelloPrinter.java

Analyzing Your First Program: Class Declaration

•Classes are the fundamental building blocks of Java
programs:

•Declaration of a class called HelloPrinter

public class HelloPrinter

•The name of the public class must match the name
of the file containing the class:

•Class HelloPrinter must be contained in a file
named HelloPrinter.java

Analyzing Your First Program: Methods

•Each class contains declarations of methods.

•Each method contains a sequence of instructions.

•A method contains a collection of programming
instructions that describe how to carry out a
particular task.

•A method is called by specifying the method and its
arguments.

Analyzing Your First Program: mainMethod

•Every Java application contains a class with a main
method
•When the application starts, the instructions in the main

method are executed

•Declaring a main method
public static void main(String[] args)

{

. . .

}

Analyzing Your First Program: Statements

•The body of the main method contains statements.

•Our method has a single statement:
System.out.println("Hello, World!");

•It prints a line of text:
Hello, World!

Analyzing Your First Program: Method Call

•A method call:
System.out.println("Hello, World!");

•A method call requires:
1. The method you want to use (in this case,

System.out.println)
2. Any values the method needs to carry out its task

enclosed in parentheses (in this case, "Hello,
World!")

•The technical term for such values is arguments

Analyzing Your First Program: Printing

•You can print numerical values
System.out.println(3 + 4);

• evaluates the expression 3 + 4
• displays the number 7.

•System.out.println method prints a string or a
number and then starts a new line.
• The sequence of statements

System.out.println("Hello");

System.out.println("World!");

• Prints two lines
Hello

World!

•There is a second method, System.out.print, that you
can use to print an item without starting a new line

Self Check

How would you modify the HelloPrinter program to print the
word "Hello" vertically?

Answer:

System.out.println("H");

System.out.println("e");

System.out.println("l");

System.out.println("l");

System.out.println("o");

Self Check

Would the program continue to work if you replaced line 7 with this statement?

System.out.println(Hello);

Answer: No. The compiler would look for an item
whose name is Hello. You need to enclose Hello in
quotation marks:

System.out.println("Hello");

Self Check

What does the following set of statements print?
System.out.print("My lucky number is");

System.out.println(3 + 4 + 5);

Answer: The printout is My lucky number
is12. It would be a good idea to add a space
after the is.

Self Check

What do the following statements print?
System.out.println("Hello");

System.out.println("");

System.out.println("World");

Answer:

Hello

a blank line

World

Errors

• A compile-time error (syntax error)
• is a violation of the programming language rules

• detected by the compiler.

System.ou.println("Hello, World!");

• A run-time error (logic error)
• causes a program to perform an action that the programmer did not

intend.

System.out.println("Hello, Word!");

Errors

•Exception - a type of run-time error
•Generates an error message from the Java virtual

machine
•This statement
System.out.println(1 / 0)

•Generates this run-time error message
"Division by zero"

Self Check

Suppose you omit the "" characters around Hello, World!
from the HelloPrinter.java program. Is this a compile-time
error or a run-time error?

Answer: This is a compile-time error. The compiler will complain
that it does not know the meanings of the words Hello and
World.

Self Check

Suppose you change println to printline in the
HelloPrinter.java program. Is this a compile-time error or a
run-time error?

Answer: This is a compile-time error. The compiler will
complain that System.out does not have a method
called printline.

Self Check

Suppose you change main to hello in the HelloPrinter.java
program. Is this a compile-time error or a run-time error?

Answer: This is a run-time error. It is perfectly legal to
give the name hello to a method, so the compiler
won't complain. But when the program is run, the
virtual machine will look for a main method and
won't find one.

Self Check

When you used your computer, you may have experienced a
program that "crashed" (quit spontaneously) or "hung" (failed to
respond to your input). Is that behavior a compile-time error or a
run-time error?

Answer: It is a run-time error. After all, the program
had been compiled in order for you to run it.

Self Check

Why can't you test a program for run-time errors when it
has compiler errors?

Answer: When a program has compiler errors, no class
file is produced, and there is nothing to run.

